曹玉暖的连续提问让会议室里气氛热烈起来,大家都觉得既然一个博士实习生提出的问题胡一亭都耐心解答,那自己提一两个深奥些的问题也不算丢人吧。
在这种心态下大家也变得放松起来,一个个问题接踵而至,胡一亭对此也都毫不厌倦,一一耐心作答。
在回答了二十多个问题以后,众人对胡一亭的技术底蕴和知识深度有了直观认识,大家终于明白,胡一亭的技术背景已经不能用成熟来形容,简直可以称得上博大精深!
成光所马佳光所长在会议桌旁安静地听着,心中惊异莫名,一系列问题之后,他清楚地认识到,胡一亭这种水平完全可以媲美西方顶级半导体实验室首席科学家的程度,没有十几年的制程与芯片设计功底,根本不可能对这么多问题举重若轻,对这么多技术案例信手拈来,他对制程工艺的掌握和对制程设备的理解,可以说高于国内自己见过的所有专家!
“天才难道就是这样的吗?他才18岁啊……我18岁的时候在干嘛呢……难道胡一亭是从小就在半导体实验室里泡大的不成?实在是无法解释啊……”
胡一亭说的口干舌燥,眼看着大家的问题告一段落,便低下头继续翻动自己做的PPT。
“嗯,接下来我给大家讲一下,这是我发明的一个新技术。”
一听说又有新技术要诞生了,在座的科学家和工程师们立刻竖起了耳朵,生怕漏过一丝信息。
胡一亭指着投影屏幕道:“这是我做的关于存储器技术发展的一个路线图,大家可以看到,从存储器诞生以后,出现了挥发性存储器和非挥发性存储器,其中非挥发性存储器的地位越来越重要,从1970年诞生了以浮空多晶硅栅为基础的可擦除只读存储器EPROM之后,国际上的存储半导体技术并没有丝毫裹足不前,而是正在不断加速前进。
EPROM需要从系统上取下后暴露于紫外光下进行擦除,且每次擦除都完全抹去所有信息,这样使用很不方便,目前已经逐渐退出市场。它的替代物是后来出现的电可擦除EEPROM,从此存储器就实现了在电路中灵活编程。
之后在EEPROM的基础上,又发展出了快闪存储器Flash-memory,比起每次只能操作单字节擦除的EEPROM,Flash-memory可以允许同时擦除全部阵列单元的存储信息,因此目前围绕Flash-memory技术的开发,国际上已经形成了一股潮流,科技界对于这一器件的未来非常看好,西方各大厂商都试图在这一领域取得技术突破。
目前来说,国际上认为,只有不断在制程线宽上做文章,才能把闪存做的更大,因为芯片面积想要做大难度很高,面积增加带来的成本上升曲线是陡峭的,非常划不来,所以只有采用最先进的线宽才能在同样大小的闪存颗粒上集成更多的存储单元。
但是我们应该明白,制程线宽的提升是很慢的,按照摩尔定律的升级速度,晶体管数量要18个月才能翻翻,也就是说闪存芯片的容量被摩尔定律锁住了。
这是不可以接受的!
至少对于我们这些搞技术的人来说是无法接受的!我们决不能被摩尔定律捆住手脚。”
此言一出,大家都愣住了,心说你胡一亭是牛,这我们承认,可你要挑战摩尔定律,这大话可就说的太离谱了,不提高线宽的前提下,你就是把设计做出花来,晶体管数量也还是那么多,怎么可能提高存储容量呢?
胡一亭知道大家的困惑,继续道:“其实方法是有的,我今天要介绍的就是我思考出的一种突破闪存容量上限的新技术。”
胡一亭切换PPT图片,“目前国际上有些专家也对此阐述过一些技术,我总结下来有三种,一种是质子非挥发性存储器;第二种是纳米存储器;第三种是单电子存储器。
我想说的是,这些都不靠谱,至少三十年内看不到商业应用的前景,因为无论从材料学还是从工程学角度,这些目前都是科幻里才能实现的技术,实验室里进行少量晶体管质子存储实验,或者用一两个碳纳米管验证可存储性能,或者用精密仪器实现单电子操纵,这都可以,但一到工程上就行不通了,大面积的工程应用做不出来就等于白说,现在谁都不知道要用怎样的设备和工艺去进行大规模制造,所以我们不要去考虑这些概念。”
胡一亭继续切换PPT,“目前我们能做的只有继续在Flash-memory技术上进行发展,继续依靠半导体器件的电荷俘获原理,通过改进传统的浮栅结构,发展与普通逻辑工艺相兼容的新技术。
我个人这次发明的这种新技术,我称之为Multi-Level-Cell,简称MLC,而传统Flash-memory闪存工艺我称之为Single-Level-Cell,简称SLC。
顾名思义,这两者区别在于传统SLC是单层式存储,而我发明的MLC技术是多层式存储。”
胡一亭说完,整个会议室骚动起来,大家的兴趣完全被他调动起来。
赵赫激动道:“胡总,这个多层存储究竟是怎么回事?是不是把两个芯片叠在一起做封装?这要怎么搞?”
胡一亭笑道:“别急别急,我这就说,但不是你想的那样,pop叠层封装工艺并不能降低闪存成本,两片颗粒叠加封装只能增加单芯片容量而已,价格也只会更加昂贵,和我说的MLC构造是两码事。”
说着胡一亭切了一张自制的PPT,开始对着自己昨晚鬼画符般做出的简图介绍起MLC构造的特点来。
“大家看啊,这个多晶硅栅下面是三层绝缘薄膜,这三层薄膜分别是隧穿氧化层、氮化硅、屏障氧化层,其中氮化硅具有极高的电子陷阱密度,可以捕获电子,达到存储电荷的目的,带电就是1,不带电就是0,这是常识了。
我们都知道半导体中有两种载流子,一种是电子,一种是空穴,我们在对单元进行写入操作时,采用热电子注入法,将热电子注入沟道边缘的氮化硅,这样就完成了写入过程。在作擦除时,利用价带间的空穴,将空穴注入沟道边缘的氮化硅,消除电荷,就完成了擦除。
接下来我说关键点,大家看图,由于氮化硅的绝缘性,热电子效应产生的电子只能被注入并限制在沟道边缘,这样一来,两侧沟道一旦全部带电就是11,全部不带电就是00,可我们一旦把两侧沟道其中一侧进行单独擦除,就会出现四种情况,一种是01,一种是10,于是我们就在不进行复杂工艺改变的前提下,让现有的Flash-memory容量增加了一倍!”
胡一亭对着图片解释完之后,会议室里一片哗然,科学家工程师们先是面面相觑,随即手足无措,接着便开始坐立不安,最后全都开始叫好称赞起来,甚至有人开始鼓掌。
其中赵赫更是欢喜的抓耳挠腮,他已经被胡一亭勾引的失去了理智,急忙道:“胡总你太神了,你这是怎么想出来的!这可是专利啊!是重光的专利啊!我们得赶紧实验!赶紧写论文申请专利!”
曹玉暖也欢喜的鼓起了掌:“胡一亭你的设想太完美了!我觉得可行!真的可行!这个路子怎么以前就没人想到呢!你真是天才!我就知道你是最棒的!”
胡一亭看着大家的兴奋劲,心想这哪是我想出来的啊,这是以色列saifun公司搞出来的SONOS-Falsh技术,被英特尔在97年9月正式公布并申请专利,同时应用到他们的闪存产品中的设计,自己不过是拾人牙慧罢了。而且今后自己还将拿出另一种多电压控制栅极多层注入电荷技术的MCL产品,彻底统治MLC闪存专利市场,直到把闪存技术推向TLC和3D-NAND制程!
这时奚龙山突然开口问道:“胡总,我有个问题,你这么一搞,的确让一个存储单位可以承载四个信息,比以前翻了一倍,可接下来怎么读取呢?”
胡一亭笑了起来:“这四种情况的电压是不同的呀,我们只要设计出一套解码电路,用于读取并解析数据就行,根据我的初步设计,可以把0.5V-2.5V设定为11,2.5V-4V设定为10,4V-5.5V设定为01,5.5V到6V设定为00,具体的解码电路设计我已经有了腹稿,这款芯片的初步设计我已经胸有成竹,上周我已经把SLC芯片设计改良完成,本周我就把这款MLC的芯片设计拿出来,下周就能进行制程工艺流程的设计,最晚月底,我们就对这款MLC进行第一次工程流片!”
说完胡一亭意气风发,高高举起右手指着天花板:“我告诉大家!重光将成为世界上第一家采用MLC技术的闪存设计企业!重光的专利将永载史册!而这项专利必将让我们得以摆脱目前所受的英特尔和东芝的闪存专利束缚,抵消我们需缴纳给国际闪存技术联盟的专利费!并很有可能反过来赚他们的钱!”
奚龙山惊讶的合不拢嘴,上唇哆嗦着,轻声感慨道:“胡总……真神人也……”